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11 3ackgrou nd and 1 ntrod uction

The Deep Space Network (DSN) (designed and operated by the Je  Propulsion Laboratory for the
National Aeronautics and Space Admninistration (NASA)) provides end-to-end teleconmmunication
capabilities between carth and various interplanctary spacecraft throughout the solar system. Since
spacccraft arc always severely limitedinterms of avail able transinitter power (for example, each of
the Voyager spacecraft only usc 20 watts to transmit signals back to carth), all subsystems of the
end-to end conmnunications link (radio telemetry, coding, receivers, amplifiers) tend to be pushed
{o the absolute limits of performance. The large stecrable ground antennas (70m and 34111 dishes)
represent critical potential single points of failure inthe network. lu particular there is only a
single 70 antenna at cach complex because of the large cost and calibration effort involved in
constructing and operating a steerable antenna of that sin. The 70mantennas win-c originally
built inthe 1960’s and arc now operating beyond their originally designed working lifetime. H ence,
as antenna components age and become less reliable, there is significant motivation to monitor
antenna signals online in order to quickly detect potent jally catastrophic failures and to identify
trends which show gradual comnponent degradation over time. In this paper wc describe recent
results in the development of robust online monitoring algorithins.  “I'hese algorithins arc based
on a hybrid combination of time series modelling, pattern recognition, and hidden Markov model
methods.

2 DSN Antenna Systems

The DSN autenna pointing systems consist of azitnuth and clevation axes drives which respond
to computer-gencrated trajectory comnands to stecr the antenmain real-ti]llc. Pointing accuracy
requirements for the antenma arc such that there is little tolerance for component degradation.
Achieving the necessar y degree of positional accuracy is rendered diflicult by various non-lincaritics
inthe gear andmotor elements and environimental disturban ces such as gusts of wind affecting the
antenna dish structure. Ofl-beam pointing can result in rapid fall- ofl iu signal-to-noise ratios aud
consequent potential loss of irrecoverable scientific datafromthespacecraft.

The antenma servo pointing systemns arc a complex mix of electro-mechianical components. A
faulty component manifests itself indirectly via a changeinthe characteristics of observed sensor




rcadings in the pointing control loop. Because of the non-lincarity and feedback present, direct
causal relationships between fault conditions and observed sy nptoms can be difficult to establish

this makes manual fault diagnosis a slow and expensive process.  In addition, if a pointing
problem occurs while a spacecraft is being tracked, the antenna is often shut-down to prevent any
polential da mage to the structure and the track is transferred to another autenna if possible. Hencee,
at present, diagnosis often occurs after the fact when the original fault conditions arc impossible
to replicate, further hindering the troubleshooting process.

3 Time Series and 1 lidden M arkov M odels for FFaull 1)etection

In this paper we describe the application of tine series and Markov modelling methods to the
problem of online detection of fault conditions in the anutenna electro- mechanical drive systens.
Conventional control-theorctic approaches to fault detection in dynamic systems rely heavily on
accurale linear models of the systemn [1] and, hence, are not practical for our purposes due to the
complexity and non-lincarity of the antenna systemn. Knowledge-based app roaches are not directly
applicable cither duc to the dynarmic nature of the systemn and the presence of signal feedback.

Instead we have developed an approach based on autoregressive exogenous (ARX) time series
cocflicients which are estiinated online by treating the rate coimnand and the drive motor current
as the system input and output respeclively. FFaulls arc detected by observing changes in the ARX
cocflicients over time. This is achieved by the use of non-parametric statistical patternrecognition
methods which estiimate the posterior probability that the coeflic ients belong to particular states
such as norinal, transient faults, cte. [2]. Finally, temporal correlat ion is modelled at the state level
by embedding the state probabilities within a hidden Markov model (HMM) framework [3].

The Markov nature of the model refers to the fact that the future state of the system is only
governed by the present. state and not the past (few the conmonly used first-order maodel). While
this may scem like a strong assumption it is in fact broadly applicable in practice - extensions
to the basic idea (such as semi-Markov models for explicit state durations) allow the capture of
more complicated model dynamices if required. The “hidden” aspect of the Markov model refers
to the fact that while the underlying state of the system can not be direetly observed (it is hidden
from the obscrver), nonetheless symptoms (in this case the estimated ARX cocflicients), which arc
a probabijic(ic function of the st ates, can be directly observed. Hence, by the use of maximum
likelihood techniques, for a given sequence of observed cocflicients, themost likely sequence of
underlying states can be inferred.

The 1IMM method was primarily developed for modelling the dynainic non-stationary nature
of speech signals - {he application of the method to online monitoring of dynamic systemns has
only recently been proposed {4, 5]. The HMM approach is an extremnely eflcctive tool, allowing
the incorporation via the model transition probabiliti es of relatively high-level knowledge regarding
long- term systemn behaviour (such as MTBI estimnates), and reducing the false alari rate by several
orders of magnitude (compared to no modelling at all of the temnporal context of the problem).

4 Results and Conclusions

The application of the HMM niethod is illustrated using online field data from a 34m incter beam-
waveguide rescarch antenna located at the DSN Goldstone site in California. Empirical results
based on online tests, where hardware faults were introduced into the system ina controlled imnanner,
demonstrate the practical utility of the method: all faults were detected within a few scconds of
occurrence and no false alaris were recorded during the entire test. Extensions of the basic inethod



arc also discussed: theonlineadaptation of (lie model over time, the ability to detect novel fault
conditions (such as transient hehaviour) [6], and the ability to diagnose and isolate faults to the
component level based on stinplified systein models.

The comnbination of time series, patiernrecognition and Markov mode] methodologies provide
a novel and robust framework for online monitoring of dynainic systeins where more conventional
methods are not app licable. In particular, other th an the fact that it is not directly amenable to
lincar modelling, there is nothing unigue about the antenna application: in principle, the method
could be applied to monitoring dynamic systems such as industrial machiuery, chemical process
plants, onboard vehicle systems, biomedical systeins, and so fort]].

In conclusion, the current focus of the work is to extend to the experiients to the operational
70m antennas: in addition the HM M mnonitoring systemn is now included as part of the standard
design of thenext generation of DSN antennas which arc to be constructed and operational by the
midto late 1990's.
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